Modeling the frequency and magnitude of future debris flows to determine the optimum hazard mitigation strategy. Communicating risk to clients by displaying the probability of event paths for three decisions:
Duncan Wyllie, a Principal of Wyllie & Norrish Rock Engineers, uses the Palisade software PrecisionTree for probabilistic modeling of debris flow protection measures.
When analyzing the optimum method of protecting an area at risk from debris flows, three decisions are compared – accepting existing conditions, constructing a containment dam with sufficient capacity to contain future flows, or relocating residences on the debris flow runout area. Creating probabilistic decision trees in PrecisionTree allows uncertainties in the frequency and magnitude of future debris flows to be analyzed, and for comparison of costs between constructing a dam and relocating the residences.
Wyllie & Norrish Rock Engineers, with offices in Seattle and Vancouver, Canada, is a specialist engineering company working in the fields of landslides, tunnels, slopes, and foundations. Duncan Wyllie and Norman Norrish, the company principals, have a combined total of 80 years of experience in applied rock mechanics.
Since the 1990s, Wyllie and Norrish have been utilizing Palisade software to analyze natural hazards and select hazard mitigation procedures.
When a potential debris flow hazard is located above a residential development, PrecisionTree can be used to create a probabilistic decision tree that maps out possible scenarios, the likelihood they will occur, and the estimated damage costs. Three decisions are compared – existing conditions, constructing a debris flow dam, or evacuating the debris flow runout area.
ss
With reference to the decision tree shown below, the components of the analysis are as follows:
For a closer look, download our free Debris Flow Containment Dam example model.
Analysis shows that the optimum decision is to construct a containment dam because the total cost of mitigation plus the expected cost (EV) of damage is lower for the dam construction (EVΣdam = $200,150) than for existing conditions (EVΣexisting = $360,000) or for relocating the houses (EVΣhouses = $2,000,600).
The use of PrecisionTree allows possible mitigation measures, along with the probability of event occurrence and cost, to be analyzed. The analysis unambiguously identifies the most cost-effective mitigation measure, and the decision process is clearly mapped out in the decision tree.
The use of @RISK and PrecisionTree software to prepare decision trees modeling all potential outcomes enables Wyllie & Norrish Rock Engineers to quantitatively determine the optimum protection strategy and easily communicate the findings.
With Palisade’s products, Wyllie & Norrish Rock Engineers can:
By using probabilistic analysis, Wyllie & Norrish Rock Engineers ensure that the best decision is reached for each at-risk area and if necessary, effective debris flow dams are created to protect nearby structures.
Download our free example model, Decision Trees in Geotechnical Engineering, to explore three decision tree examples from the geotechnical engineering field: debris flow containment dam, rock slope stabilization, and gravity dam reinforcement anchors.