

Business Insights Through Data, Using Excel

Guest **Dr. James Abdey**Associate Professor, London School of Economics

Host **Efthalia Anagnastou**Manager, Marketing Partnerships &
Strategy, Lumivero

Moderator

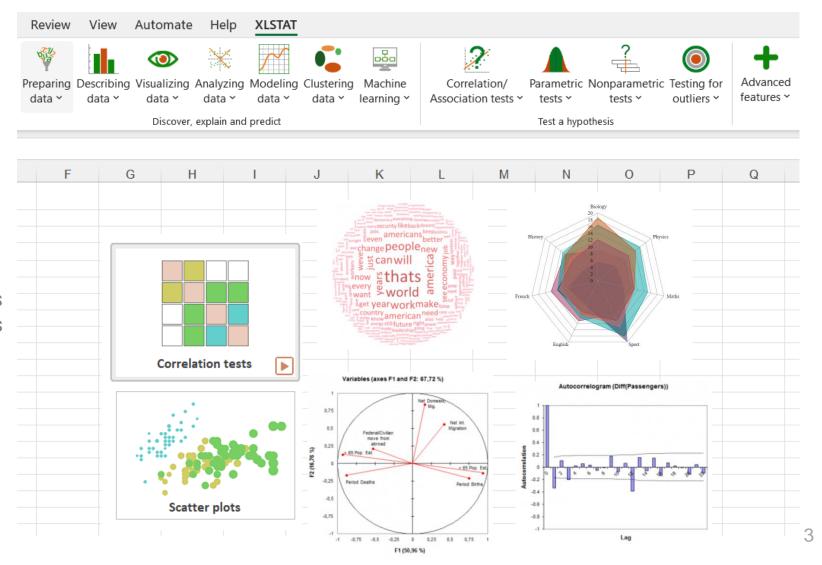
>

Thalia Anagnostou

Marketing Partnerships & Strategy Manager Lumivero

Thalia Anagnostou eanagnostou@lumivero.com

Our Statistical Solution for Microsoft Excel ®


Data Visualization - Exploratory Analysis - Hypothesis Testing - Machine Learning - Time Series and more

XLSTAT

- Integration with Microsoft Excel
- +270 features
- No coding required
- In App customer support access
- 400+ tutorials and videos
- Free version with 14 essential features
- Discounts for students and academics

Learn more about XLSTAT

Request a demo

Lumivero Community

Share and Learn

- Research Webinars
- Podcast: Between the Data

Connect

- Product User Group Meetings
- Research Online Groups

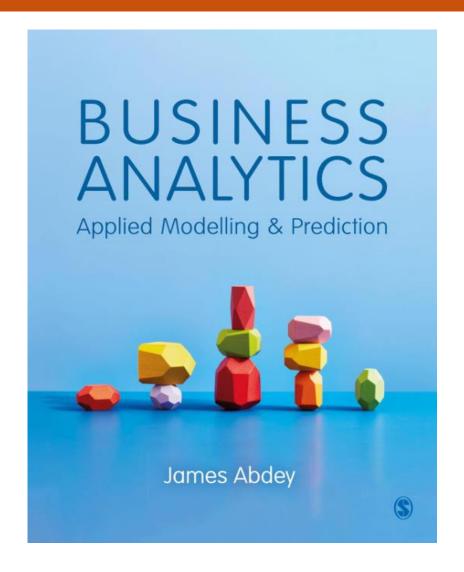
Join Now

Presenter

>

Dr. James Abdey

Dr. James Abdey is an Associate Professor (Education) in Statistics at the London School of Economics, having gained his PhD in 2010 from LSE, asking "To p, or not to p?"! He teaches the Department's large service-level undergraduate courses in mathematical statistics and quantitative methods, as well as elective courses in market research. His research interests include market research techniques and forensic statistics - the interplay of statistics and the law.


Dr. Abdey has been closely involved with LSE's Summer School and the University of London International Programmes for a number of years. He helped launch the BSc in Data Science and Business Analytics, with students currently registered in a number of countries. Outside of academia, he has also worked on various quantitative-based consultancy projects in areas including the art market and the World Gold Council.

Dr. James Abdey, Associate Professor London School of Economics

The future is bright, the future is data

Digital resources

Instructor Resources Help

Login

Business Analytics: Applied Modelling and Prediction

by James Abdey

Student Resources

Excel Examples and Datasets

Screencasts

On this website students will find:

Excel examples and datasets to help you master your analytics skills through handson learning

Screencasts of worked examples from Excel and Tableau demonstrating how the programmes can be used

lust click on the links to the left.

Lecturers can log in to access:

A Teaching Guide providing ideas and inspiration for using the book in teaching, including tips for helping students to grasp tricky concepts

Solutions for all end-of-chapter exercises

PowerPoints for each chapter that can be adapted and edited to suit individual teaching needs

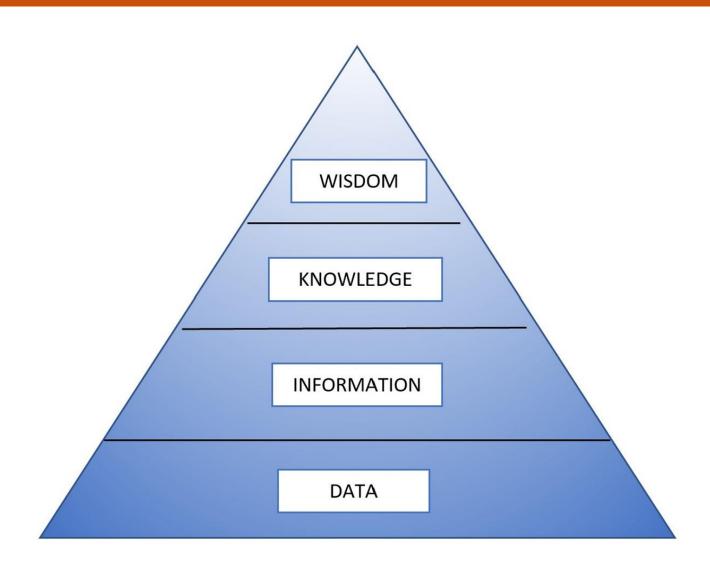
A testbank of questions that can be used to assess students' understanding and help them to prepare for exams

Log in or create an instructor account by clicking on the tab at the top.

Data: the new oil?

Data: the new oil?

"The world's most valuable resource is no longer oil, but data."


The Economist

Problem: oil is finite, (big) data is near infinite.

But: Data, like oil, derives value after refinement.

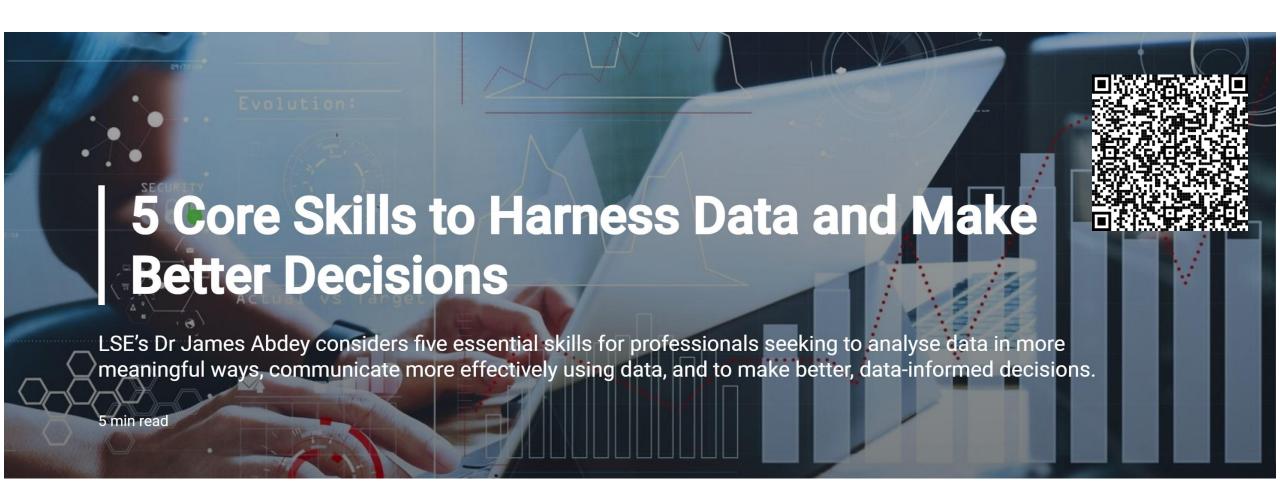
DIKW pyramid

In-demand skills

Top Specialized Skills

- 1. Data Analysis
- 2. SQL
- 3. Teamwork / Collaboration
- 4. Microsoft Power BI
- 5. Python
- Stakeholder Management
- 7. Project Management
- 8. Key Performance Indicators (KPIs)
- 9. Tableau
- 10. Business Intelligence

Top Baseline Skills


- 1. Communication Skills
- 2. Microsoft Excel
- 3. Detail-Orientated
- 4. Problem Solving
- 5. Research
- 6. Planning
- 7. Writing
- 8. Organisational Skills
- 9. Presentation Skills
- 10. Analytical Skills

Top Credentials

- 1. Microsoft Excel
- 2. SQL
- 3. Python
- 4. Tableau
- 5. Microsoft Office
- 6. Microsoft Powerpoint
- 7. Data Visualisation
- 8. Salesforce
- 9. SQL Server
- 10. Visual Basic for Applications (VBA)

Future-proof yourselves!

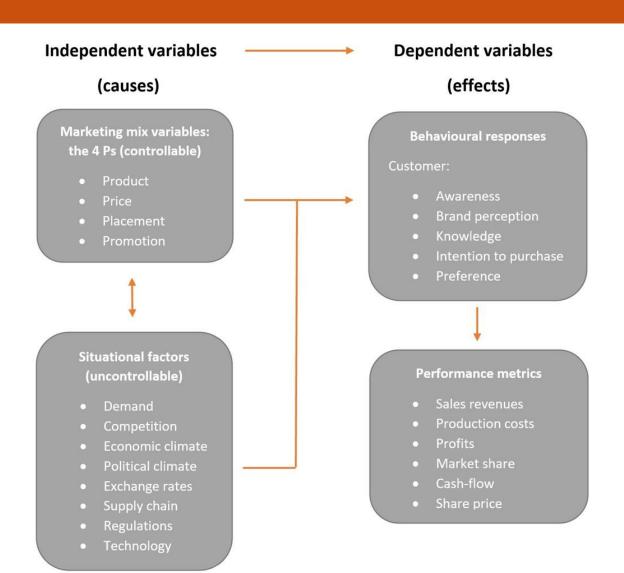
Anscombe's quartet

Data	aset 1	Data	set 2	Data	aset 3	Dataset 4			
X_1	Y_1	X_2	Y_2	X_3	Y_3	X_4	Y_4		
10.0	8.04	10.0	9.14	10.0	7.46	8.0	6.58		
8.0	6.95	8.0	8.14	8.0	6.77	8.0	5.76		
13.0	7.58	13.0	8.74	13.0	12.74	8.0	7.71		
9.0	8.81	9.0	8.77	9.0	7.11	8.0	8.84		
11.0	8.33	11.0	9.26	11.0	7.81	8.0	8.47		
14.0	9.96	14.0	8.10	14.0	8.84	8.0	7.04		
6.0	7.24	6.0	6.13	6.0	6.08	8.0	5.25		
4.0	4.26	4.0	3.10	4.0	5.39	19.0	12.50		
12.0	10.84	12.0	9.13	12.0	8.15	8.0	5.56		
7.0	4.82	7.0	7.26	7.0	6.42	8.0	7.91		
5.0	5.68	5.0	4.74	5.0	5.73	8.0	6.89		

Anscombe's quartet

	Α	В	C	D	Е	F	G	Н
1	X1		Y1		X2		Y2	
2								
3	Mean	9	Mean	7.500909	Mean	9	Mean	7.500909
4	Standard Error	1	Standard Error	0.612541	Standard Error	1	Standard Error	0.612568
5	Standard Deviation	3.316625	Standard Deviation	2.031568	Standard Deviation	3.316625	Standard Deviation	2.031657
6	Sample Variance	11	Sample Variance	4.127269	Sample Variance	11	Sample Variance	4.127629
7	Sum	99	Sum	82.51	Sum	99	Sum	82.51
8	Count	11	Count	11	Count	11	Count	11
9								
10	X3		Y3		X4		Y4	
11								
12	Mean	9	Mean	7.5	Mean	9	Mean	7.500909
13	Standard Error	1	Standard Error	0.612196	Standard Error	1	Standard Error	0.612242
14	Standard Deviation	3.316625	Standard Deviation	2.030424	Standard Deviation	3.316625	Standard Deviation	2.030579
15	Sample Variance	11	Sample Variance	4.12262	Sample Variance	11	Sample Variance	4.123249
16	Sum	99	Sum	82.5	Sum	99	Sum	82.51
17	Count	11	Count	11	Count	11	Count	11

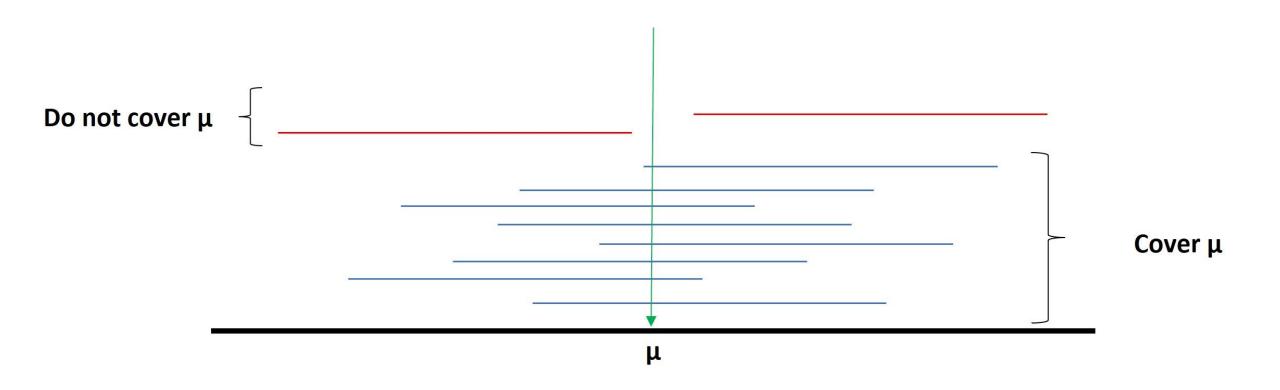
Anscombe's quartet



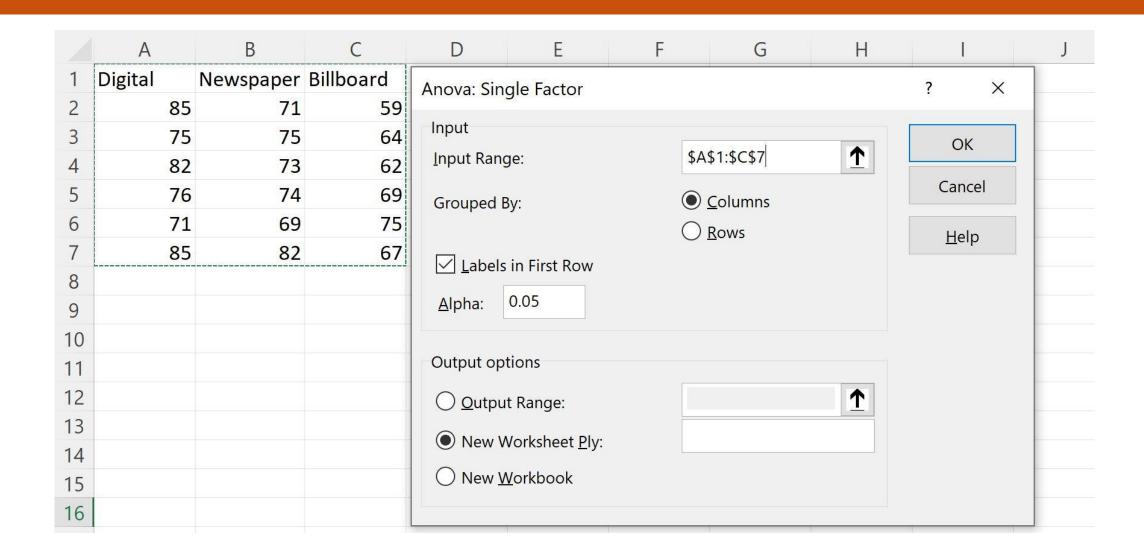
Х3

Relationships between variables

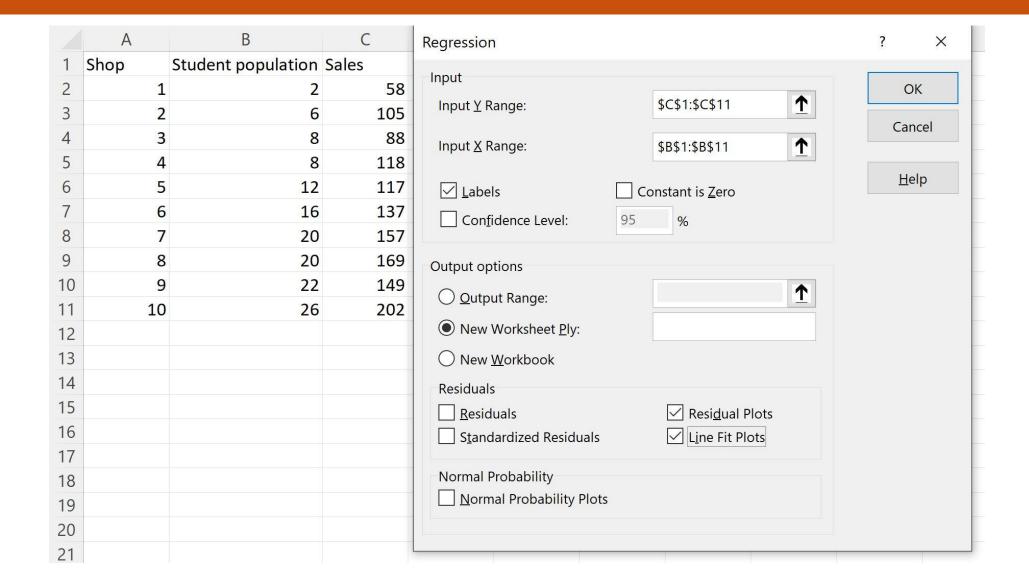
UK's EU membership referendum poll averages



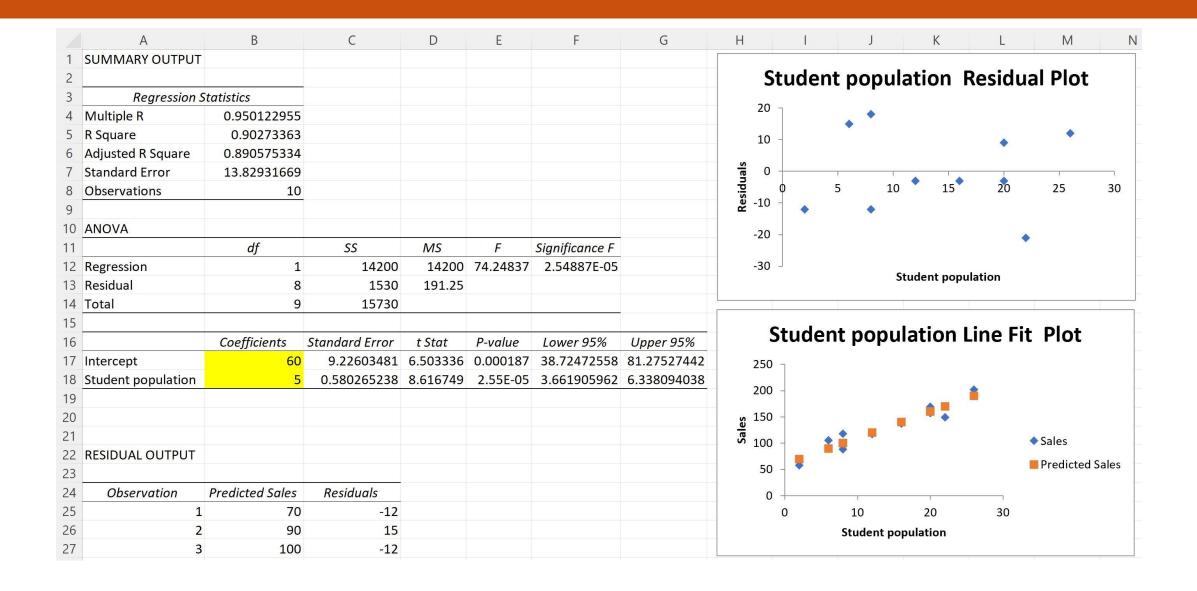
Telephone versus Online poll averages, % Leave support

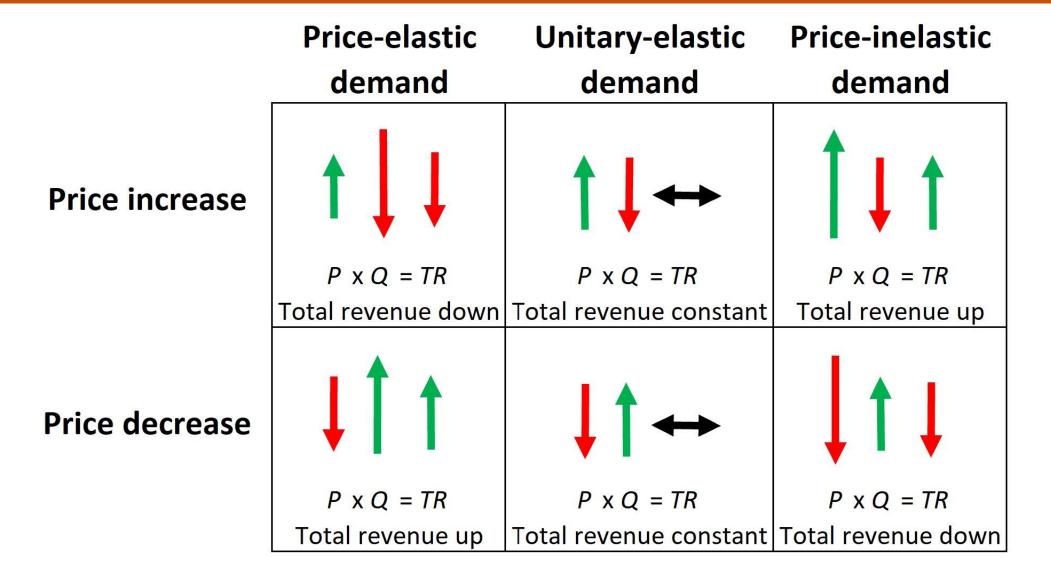

Coverage probability of confidence intervals

Excel Anova: Single Factor

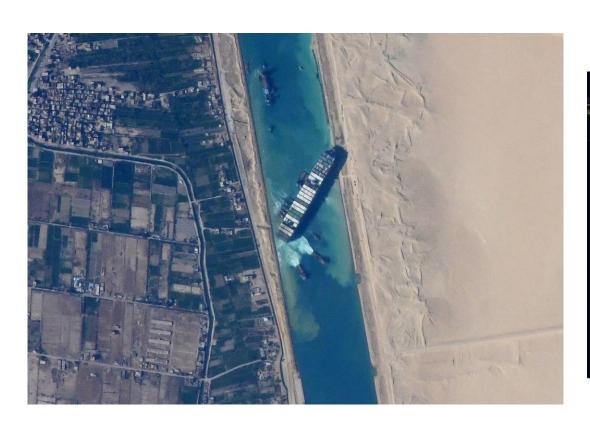

Excel results of a one-way ANOVA

	Α	В	С	D	E	F	G
1	Anova: Single Factor						
2							
3	SUMMARY						
4	Groups	Count	Sum	Average	Variance		
5	Digital	6	474	79	34		
6	Newspaper	6	444	74	20		
7	Billboard	6	396	66	32		
8							
9							
10	ANOVA						
11	Source of Variation	SS	df	MS	F	P-value	F crit
12	Between Groups	516	2	258	9	0.002703	3.68232
13	Within Groups	430	15	28.66667			
14							
15	Total	946	17				
10							


Specifying simple linear regression in Excel

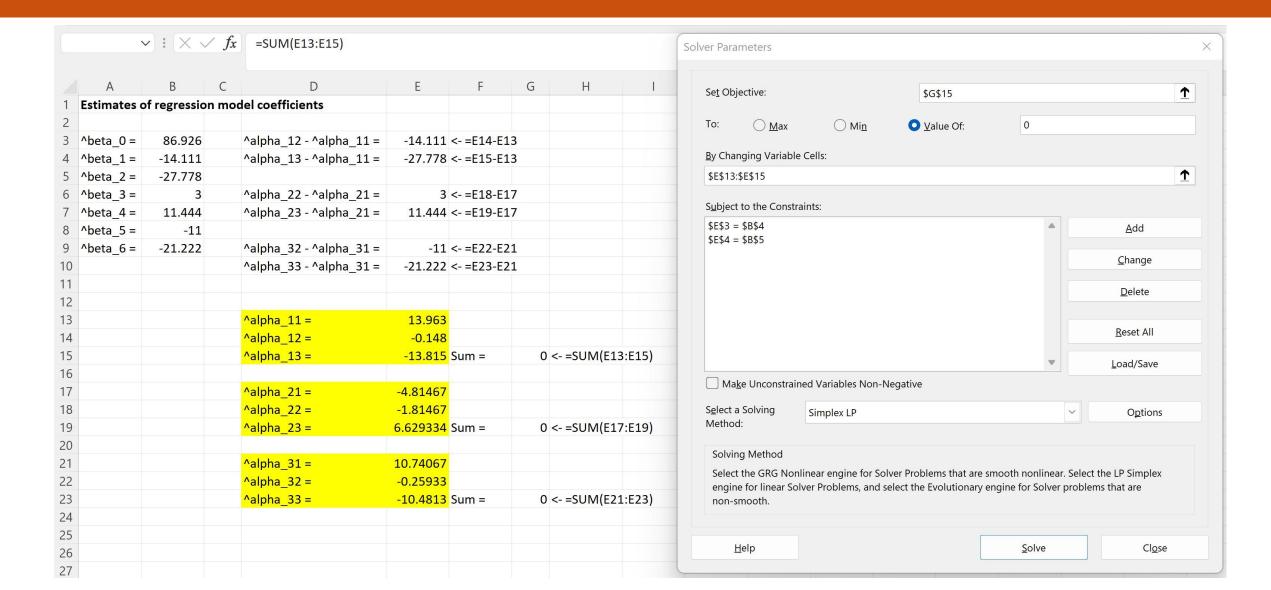

Excel outut for a simple linear regression

Effect of price elasticity of demand

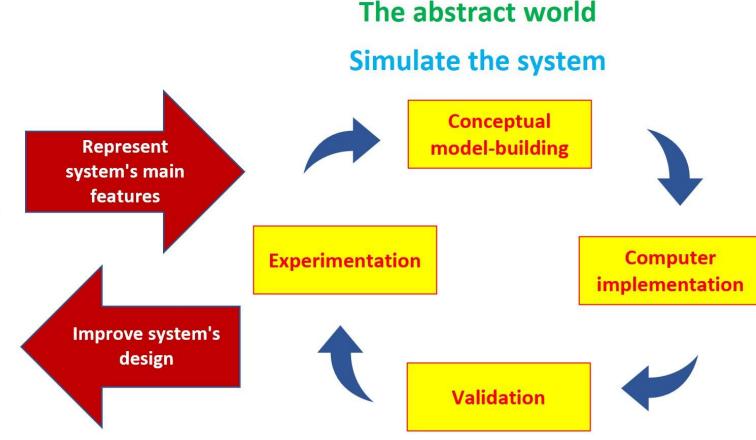

Consequences of variable misspecification

	True relationship								
Estimated model	$y = \beta_0 + \beta_1 x_1 + \varepsilon$	$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$							
	Specification is correct,	Omitted variable bias risk							
$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1$	so no issues arise	with invalid standard errors							
		(Occam's razor-induced)							
	Unbiased coefficients (good), but standard errors	Specification is correct							
$\widehat{y} = \widehat{\beta}_0 + \widehat{\beta}_1 x_1 + \widehat{\beta}_2 x_2$	are inefficient (i.e. large) lowering precision (can occur when fear of omitted variable bias)	so no issues arise							

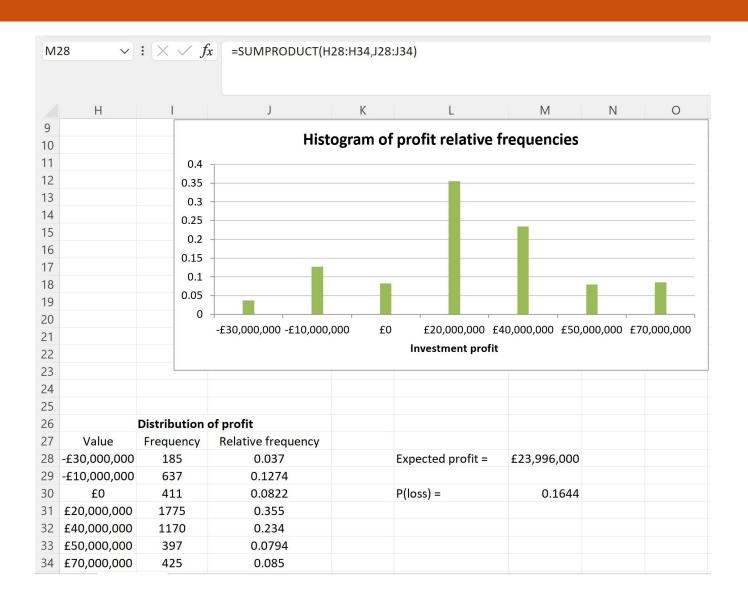
To wait, or not to wait?



Conjoint analysis: Solver solution



Linking the real world and the abstract world



Output distribution: corporate investment

Results of a Monte Carlo simulation

	f_X =IF(D15=0,0,MAX(NO	RM.INV(RAND(),D15	'2R2\. DT2\2R	,56),0))											
A	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
Simulating quarterly profit	ts														
2															
Assume quarterly revenue	s are normally distributed	ı l	Assume quar	terly costs	are exponen	ntially distribu	ted								
1															
Revenues in Q1			Costs each qu	arter											
Mean	5,000		Lambda	0.00025	į,										
7 Standard deviation	1,800														
8			Q1 revenue C	11 costs	Q1 profit	Q2 revenue C	22 costs	Q2 profit	Q3 revenue	Q3 costs	Q3 profit	Q4 revenue C	Q4 costs	Q4 profit	Total pro
9 Revenues in Q2 through Q4	Į.	Average	4,992	4,472	2 520	4,987	4,475	512	5,016	4,442	575	5,056	4,463	593	2,2
0 Mean	The previous quarter	Standard deviation	1796	3766	4169	2618	3740	4553	3211	3647	4832	3726	3666	5210	123
11 Standard deviation	Update to reflect	Minimum	0	2,000	-39,670	0	2,000	-33,097	0	2,000	-29,730	0	2,000	-42,399	-59,1
12	realised revenues	Maximum	12,059	43,757	9,054	19,283	37,818	15,922	22,299	35,058	20,299	71,018	46,038	69,018	61,5
13															
4		Simulation run	Q1 revenue C	11 costs	Q1 profit	Q2 revenue C	22 costs	Q2 profit	Q3 revenue 0	Q3 costs	Q3 profit	Q4 revenue C	24 costs	Q4 profit	Total pro
15		1	3,235	2,000	1,235	4,555	2,669	1,886	4,370	2,123	2,247	5,065	2,984	2,081	. 7,4
16		2	5,759	2,215	3,544	5,392	4,938	454	7,034	2,000	5,034	4,820	3,539	1,281	10,3
17		3	4,462	7,141	-2,679	4,435	5,365	-930	3,933	6,434	-2,502	3,434	2,000	1,434	-4,6
18		4	1,077	5,416	-4,339	836	2,000	-1,164	0	2,000	-2,000	0	2,000	-2,000	-9,
			6,699	8,452	-1,753	9,648	3,095	6,553	7,370	2,752	4,618	10,473	2,592	7,881	17,

Questions?

Free Learning Resources

XLSTAT Free 14-Day Trial

XLSTAT Blog

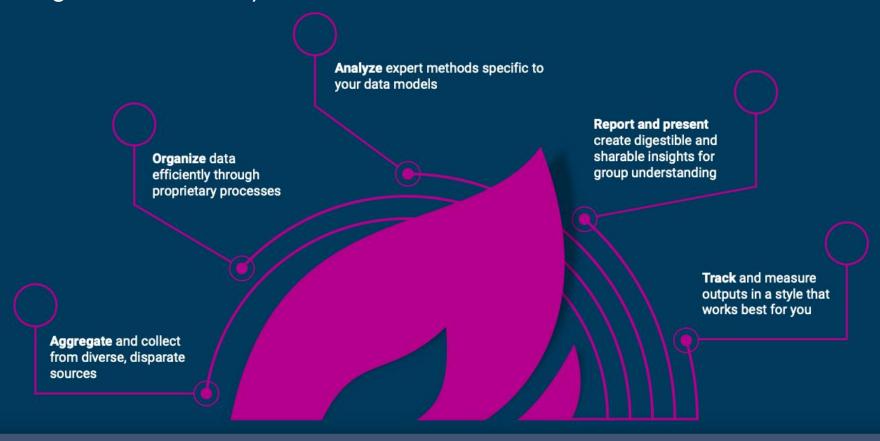
Customer Support

https://www.xlstat.com/en/contact/support

Tutorials & Videos

https://help.xlstat.com/

Our Youtube Channel


https://www.youtube.com/@XLSTAT

The Data Landscape

The most complete collection of research, data and decision-making tools available anywhere

