WEBINAR

Risk Insights in Integrated Energy Development

April 18 11 A.M EDT

KAASE GBAKON PH.D

Senior Forestry Economist at Ministry of Energy and Resources

Moderator

Senior Director of Marketing Partnerships & Strategy

Lumivero

spenna@lumivero.com

DR. STACY PENNA

Our Risk Management & Decision Analytics Solutions

Learn more about @RISK

Learn more about DTS

- Investment Planning & Portfolio Optimization
- Cost Estimation
- Engineering Reliability
- Capital Reserves
- Oil, Gas, & Mineral Reserves

Presenter

Dr. Kaase Gbakon, completed his PhD in Petroleum Economics, Management, and Policy with a focus on Energy Systems Modeling, and boasts an extensive background as a Senior Economist at the Ministry of Energy and Resources in Saskatchewan. Canada. With a wealth of experience, he held pivotal roles within the Nigerian National Oil Company including leading the Asset Evaluation and Economics group in Corporate Planning & Strategy, acting as the Lead Commercial in the ANOH Gas Processing Company (AGPC), and serving as a Senior Technical Assistant to the Chief Strategy Officer.

Kaase Gbakon Ph.D., Senior Forestry Economist at Ministry of Energy and Resources

AGENDA

Introduction

- Energy development projects tend to be:
 - Large
 - Capital-intensive and
 - Exposed to significant risk.
- Source of risk include:
 - Commodity/energy price volatility
 - Cost creep, cost of capital
 - Project schedule slip ... etc
- Fiscal rules govern how value and risk is shared between governments and investors in energy projects. The combination of fiscal rules and above risks impact cash flow expectations.
- Investors and government reps often build deterministic discounted cash flow models to simulate their respective cash receipts. However, these models leave significant uncertainties unquantified.
- Here, I use two set of fiscal rules to demonstrate the importance of probabilistic cash flow assessment.

Aim & Objectives

@RISK

<u>AIM</u>

To conduct a risk assessment comparison of a capitalintensive integrated energy project under two different fiscal rules

OBJECTIVES

- Showcase a built discounted cash flow valuation model
- Demonstrate the use of Monte Carlo simulation in @RISK to perform risk analysis
- Compare the deterministic and probabilistic results
- Make the case for use of probabilistic modelling

Methodology

Source: Paulo R., Jailton C., and Sérgio P., 2013, Monte Carlo Simulations Applied to Uncertainty in Measurement, Theory and Applications of Monte Carlo Simulations Wai Kin (Victor) Chan, IntechOpen, DOI: 10.5772/53014.

@RISK

STEPS

- Build a discounted cash flow 1. valuation model
- 2. Define probabilistic inputs into the DCF model
- Run simulation using @RISK to 3. generate probabilistic outputs
- Compare the deterministic and 4. probabilistic results

Case Study: Integrated Energy Project

- 12 Mbpd refinery
 - 28%gasoline
 - 12%Jet,
 - 30%Diesel,20%VGO,8%FuelOil
- 150 MMSCFD gas plant

- Government was proposing new petroleum fiscal terms to replace the existing one
- An oil and gas company had plans to develop a project which will incorporate upstream production, refining and gas processing
- Company wanted to understand impact of proposed terms on the integrated package
- Some questions of interest included:
 - The value distribution of integrated project
 - The government receipts under existing and proposed terms
 - Most impactful variables to project value
 - What the breakeven values were
 - The likelihood of value loss under each regime

A "fiscal regime" is a package of mechanisms for extracting government share through the life of a project...

The last question is the theme of this webinar!

Assumptions: Deterministic

RESERVE AND CRUDE CHARACTERISTICS		Units						
Oil Reserve Size	54.26	MMBBLS	PROJECT	Units	Marg. Field	Mod. Ref.	Gas Plant	Integrated Project
Crude API	38	°API	CapEx	ŚMM	1.227	244	385	1.857
Sulphur content	0.53	%wt S	OpEx	\$MM	1,155	3,370	3,297	7,823
Gas Reserve Size	1,032	BCF	Reserve Size (Oil)	MMBBLS	54	NA	NA	54
REFINERY PLANT ASSUMPTIONS			Refinery Capacity	KBPD	NA	12	NA	12
Construction Start Year	2018		Reserve Size (Gas)		1,031	NA	NA 150	1,031
Duration of Ref. Construction	2	Years	Gas Plant Capacity	IVIIVISCED	INA	NA	150	150
Stream Throughput	345	davs/vear	REFINERY PRODUC	T PRICING		\$/bbl		
% Field Production for Refining	100%	%	Gasoline			65		
Length of days of Product Storage	100%	Dave	Kerosene			62		
Dent Conseity	11 6 5 5	Days	Diesel			64		
	11,000	врѕи	Light VGO			54		
GAS PLANT ASSUMPTIONS			Heavy VGO			62		
Shrinkage Factor	10%	%	Fuel oil			40		
LPG as % of Liquids from wet gas	53%	%	GAS PLANT PRODU		G			
K - Factors (Net back factors for gas			LPG			38		
price to U/S)			Natural Gas Liqui	ids		43		
K1 (of Revenue from Gas Sales)	40%	%	Oil Price assumption	on of \$10/h	hl drives			
K2 (of Revenue from LPG Sales)	50%	%	product prices	JI UI 340/D	DI UNVES			
Fixed OpEx (% of CapEx per Annum)	2.50%	%	product prices					
Variateres/OpEx	0.50	\$/mscf						

Assumptions: Probabilistic

S/N	Variable	Probability Distribution	Graphs	Justification	S/N	Variable	Probability Distribution	Graphs	Justification
1	Upstream field	Triangular (0.8, 1.0,	75% 125%	Based on the observed distribution for	5	Refinery OpEx	Triangular (0.4, 1.0, 1.2)	30% 130%	Basis derived from Upstream OpEx
	Сарех	1.2)		less than or equal to \$2,000Million	6	Gas plant OpEx	Triangular (0.4, 1.0, 1.2)	30%	Basis derived from Upstream OpEx
2	Refinery CapEx	Triangular (0.8, 1.0, 1.2)	75% 125%	Basis derived from Upstream CapEx	7	Diagount rate	General Beta (2, 2,	9% 16%	Based on price distributions of
3	Gas plant CapEx	Triangular (0.8, 1.0, 1.4)	70%	Basis derived from Upstream CapEx	/	Discount rate	0.10, 0.15)		according to McDonald (1996)
4	Upstream field OpEx	Triangular (0.4, 1.0, 1.2)	30%	Based on the observed distribution for lifecycle OpEx less	8	Volume of field production refined	Uniform (0.7, 1)		Based on the distribution of maximum ignorance
150 -	Oil Pric MA1(0.00079844,	e(\$/bbl)-Nominal 0.26322,0.077361,-0.35215)		than or equal to \$2,000Million	9	Exchange rate	Log-Normal (164, 56)	0 1,400	Based on constructed distribution of historical exchange rates from 2001
100 - 50 -	m		Oil price is a Moving process	s modelled as Average 1					
, c	-40 - -30 - -20 -	-10 - 0 - 0 20 - 220 -	30 -						

-25% - 75% -Mean -Sample Path -Historical

Assumptions: Fiscal Terms

FISCAL INSTRUMENTS	PPT/MFR ("Existing")	PIFB 2018 ("Proposed")
Fees		
Fees and Levies	YES	YES
Signature Bonus	YES	YES
Production Bonus	YES	YES
Royalty		
Royalty by Water Depth	YES (0% - 20%)	NO
Royalty by Terrain	YES	YES
Royalty by Daily Production	YES (for Marginal)	YES
Cost Treatment		
Cost Recovery Limit	NO	YES (80%)
Cost Consolidation (Gas and O	il) YES	NO
Cost Efficiency Factor	NO	YES
Allowances		
Petroleum Investment Allowan	ce YES (5%)	NO
Production Allowance	NO	YES
Тах		
PPT	YES (65.75% - 85%)	NO
PIT	NO	YES
APIT	NO	YES

Table of applicable terms under the "Existing" and "Proposed" fiscals

Results: Deterministic

INTEGRATED PROJECT PIFB 2018 INDICATORS Units **PPT/MFR** "Existing" "Proposed" 15,016.69 15,016.69 \$MM Revenue 1,857.06 1,857.06 \$MM CapEx \$MM OpEx 7.823.18 7,823.18 Gov't Take \$MM 1,512.85 2,403.93 NCF **SMM** 3,823.60 2,932.53 NPV 10% \$MM 469.08 764.74 IRR % 15.66% 18.77% \$MM (880.22)(976.39)MCR Yrs 8.00 8.00 Payout Gov't Take (%) % 45% 28%

Government receipts in PIFB 2018 — ("Proposed") at \$1.5B is less than under the PPT ("Existing") at \$2.4B

The investor NPV under the PIFB 2018 ("Proposed") at \$765MM outperforms that under the PPT/MFR ("Existing") at \$469MM.

This outcome is also reflected in the investor IRR

Results: Deterministic

Integrated ProjEct NCF BuildUp - PPT/Pre-PIB

Integrated ProjEct NCF BuildUp - PIFB 2018

Probabilistic Results: 54.2% probability of an investor having NPV<0 under PPT/MFR

Lower Risk of making NPV<0 under PIFB than the PPT

@RISK

In addition to higher expected NPV under PIFB, the risk of loss is also lower

Results: Deterministic Government Receipts

Integrated ProjEct GT BuildUp -PPT/Pre-PIB

Comparison of Govt. Take between PPT/MFR and PIFB 2018

Probabilistic Results: At least 60% Likelihood of gov't receipts lower than Expected

While the fiscal rules impact government receipts differently, in terms of the <u>quantum</u> of expected receipts, Monte Carlo simulation shows higher likelihood of attaining lower receipts than expected.

@RISK

Probabilistic Results: Risk Distribution between Parties

	Parties	PPT/MFR "Existing"	PIFB 2018 "Proposed"	
Investor	Prob(NPV<0)	54.20%	46.80%	
Govt	Prob(GT <e(x))< td=""><td>69.40%</td><td>64.40%</td></e(x))<>	69.40%	64.40%	

- Probability of investor NPV less than zero is higher under "Existing" fiscal than "Proposed"
- Probability that government receipts lower than deterministic value is higher under "Existing" than "Proposed"
- For both parties, "Proposed" fiscal is less risky than the "Existing"
- Risk of government not meeting its expected receipts higher under both proposals than risk faced by investors
- High levels of risk to investor >45% of negative NPV highlights the risk in oil and gas.
- This table demonstrates the strong case for probabilistic analysis for big, capital spend projects

Demonstration

Conclusion

- Investor NPV under the PIFB 2018 ("Proposed") outperforms that under the PPT/MFR ("Existing").
- Investor is less exposed under the PIFB than under PPT/MFR- Maximum Cash in Red under PIFB less than under the current system.
- Refinery economics contributes at most 5% to the consolidated cash flow position of the investor
- Taking both fiscal systems, there is at least a 45% that the integrated project will deliver value loss to an investor
- Likelihood, exceeding 65% that the expected tax receipts to government from the deterministic model will not be achieved.
- The risk of government not meeting its expectations is higher than the risk of the investor not meeting theirs
- This difference in risk outcome is due to the design of the fiscal system; However, the "Proposed" fiscal is less risky to both parties (see "risk matrix")

@RISK

Appendix: Detailed Fiscal Terms

Key Rates for PPT/MFR (Existing)

Production Based Ro	ovalty: Ons	hore OIL(N	IFR)	Kbd	Rate			
	T	ranch 1	,	5	2.50%			
	T	ranch 2		10	7.50%			
	T	ranch 3		15	12.50%			
	T	ranch 4		25	18.50%			
Fixed Royalty: Onsho	ore GAS (P	PT/MFR)						
					7.00%			
Taxes and Levies								
NDDC					3.00%			
Education	Tax				2.00%			
PPT Onsho	ore/Shallo	w New Entr	ant (Yr 1 ·	- 5)	65.75%			
PPT>Yr 5					85.00%			
Key Rates for PIFB 2018 (Proposed)								
Ail Povalty Pates Pased		.						
UII NUYAILY NALES DASEL	l on Daily I	Production						
Oil Royalty Rate/PML	2.5%	Production 5%	7.5%	10%	15%	20%		
Oil Royalty Rate/PML Onshore	1 on Daily I 2.5% 0 - 2.5	5%	7.5% >2.5 <=1	<u>10%</u>	15% >10<=20	20% >20		
Oil Royalty Rate/PML Onshore (kb/d)	<u>1 on Daily I</u> 2.5% 0 – 2.5	5%	7.5% >2.5 <=1	<u>10%</u>	15% >10<=20	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Base	1 on Daily I 2.5% 0 - 2.5 ed on Daily	7roduction 5% Productio	7.5% >2.5 <=1 n	10% 0	15% >10<=20	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Based Gas Royalty Rate/PML	2.5% 0 - 2.5 ed on Daily	Production 5% V Productio 2%	7.5% >2.5 <=1	10% 0 4%	15% >10<=20 6%	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Base Gas Royalty Rate/PML Onshore (mmscfd)	2.5% 0 – 2.5 d on Daily	Production 5% Productio 2% 0-40	7.5% >2.5 <=1	10% 0 4% >400<=800	15% >10<=20 6% >80	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Based Gas Royalty Rate/PML Onshore (mmscfd) Tax Rates (Applicable f	2.5% 0 - 2.5 ed on Daily	v Production 2% 0-4(as)	7.5% >2.5 <=1	10% 0 4% >400<=800	15% >10<=20 6% >80	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Based Gas Royalty Rate/PML Onshore (mmscfd) Tax Rates (Applicable f	2.5% 0 - 2.5 ed on Daily	Production 5% Productio 2% 0-4(as)	7.5% >2.5 <=1	10% 0 4% >400<=800	15% >10<=20 6% >80	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Based Gas Royalty Rate/PML Onshore (mmscfd) Tax Rates (Applicable f	2.5% 0 - 2.5 ed on Daily	v Production 2% 0-4(as) OIL	7.5% >2.5 <=1 n)0 PIT	10% 0 4% >400<=800 GAS	15% >10<=20 6% >80	20% >20		
Oil Royalty Rates Based Oil Royalty Rate/PML Onshore (kb/d) Gas Royalty Rates Based Gas Royalty Rate/PML Onshore (mmscfd) Tax Rates (Applicable f	2.5% 0 – 2.5 d on Daily	Production 5% Productio 2% 0-4(as) OIL 65%	7.5% >2.5 <=1	10% 0 4% >400<=800 GAS 30%	15% >10<=20 6% >80	20% >20		

Key Rates for PIFB 2018 (Proposed) – Cont'd

Additional Petr	oleum Income Tax Ra	tes Based	on Price (Gas)				
Gas Price Tranch (\$/mscf) 0-6			>6<=16	>16	>16		
Additional PIT	Rate/PML (gas)	0%	0.5%/\$1	0.0%/\$	51		
Additional Petr	oleum Income Tax Ra	tes Based	on Price (Oil)				
Oil Price Tranch	n (\$/bbl)	0-60	>60<=180	>180	>180		
Additional PIT r	ate/PML (oil)	0%	0.5%/\$1	0.0%/\$	0.0%/\$1		
Production Allowance for Oil			Production	Allowance	for		
			Condensate				
Onshore		q >	OMMBBLS				
The Lower of:	30% of value of Oil F	Production	30% of value of Oil Production AND				
	AND \$3/bbl* Oil proc	duction	\$3/bbl* Oil production				
Production Allowance for Dry Gas			Production Allowance for Nat. Gas				
Onshore		> 0BCF					
The Lower of:	100% of value of Ga	s	50% of value	of Gas Produc	ction		
	Production AND		AND \$1.	50/mmbtu*	Gas		
	\$1.50/mmbtu* Gas		production				
	production						

Questions?

Upcoming Events

<u>Register Here</u>

WEBINAR

May 23

11 A.M EDT

Monte Carlo Simulation:

A Powerful Tool for

Lean Six Sigma

@RISK

FRANÇOIS MOMAL

Master Black Belt, FranceStat

Free Learning Resources

@RISK Free Trial Version

Request a Demo

@RISK Blog

Example Models

Case Studies

Lumivero Community

<u>Join Now</u>

Share and Learn

- <u>Research Webinars</u>
- Podcast: Between the Data

Connect

- Product User Group Meetings
- <u>Research Online Groups</u>

Funding Opportunities

• Early Career Researcher Grant - 2024

Your opinion counts!

Leave your feedback on the webinar or request a **free @RISK demo** below!

Survey Link

